
Arabic Phonetic Web Sites Platform

Using VoiceXML

Bassem KOSAYBA
Departement of Software Engineering & Information Systems

Damascus University, Syria

script.java@gmail.com

Hasan Alkhedr, Firas Jdeed
5th year Students – Albaath University, Homs, Syria

Amer Shriedi, Eman Al-mozaien
5th year Students – Mamoun University of Science and Technology (MUST)

Abstract- In this paper we discuss a new important technology

which is a VoiceXML the markup language for browsing sites

or providing services among human speech over the network

(internet or other). We suggest a platform to add Arabic

support to this technology. We introduce this technology and

its methodology (how to work). Since that this technology

requires the user to own some major components such as

VoiceXML browser, Arabic TTS and Arabic ASR, we describe

these components in some details. The paper firstly introduces

the VoiceXML, then it explains the architecture of the

VoiceXML browser in details, after that it discusses the

specifications of Arabic language, next it discusses the method

of building Arabic TTS and Arabic ASR and their

architecture.

Keywords- VoiceXML, Arabic language, Arabic TTS

(Text-To-Speech), ASR (Autamatic Speech Recognition).

I. INTRODUCTION

VoiceXML is a markup language derived from XML

"eXtensible Markup Language" for voice applications. The

power of VoiceXML is that it standardizes voice application

development by leveraging the full set of available web

development tools and techniques. For example, developers

can write a single server-side program that can be used to

display stock quotes on the web or read-back stock quotes

over the phone.

This program would use the same business logic code for

getting the quotes, but would have code for two user
interfaces one for speech and one for HTML. Major goal of

VoiceXML is to bring the advantages of web-based

development and content delivery to interactive voice

response applications.

The existing web infrastructure was designed for traditional

desktop browsers and not for hand-held devices. The data in

the web is stored in HTML format which cannot be delivered

to mobile devices. The only acceptable way to present data to

devices like mobile phones or traditional phones, is audio.

Certain voice browsers are capable enough to process

VoiceXML content and produce the output in the form of

audio using components such as speech recognizer (ASR)
and speech synthesizer (TTS).

VoiceXML is designed to create audio dialogs that feature

digitized synthesized speech, recognition of spoken as well

as telephone keypad input, and the recording of spoken input.

VoiceXML allows developers to build dynamic web sites

including voice (speech) services which allows us to interact

with web applications via voice and speech.

VoiceXML facilitates the browsing ability for crippled

people and even for normal ones, as they can browse the

Internet while they're driving, shopping….etc. Unfortunately

the Arabic language is not supported yet in the VoiceXML
technology, even so its one of the most spoken language over

the universe.

II. OBJECTIVES AND APPROACH

To develop VoiceXML editorial and browsing tools with

Arabic language support. Currently the browsing and editing

tools are both designed by XML-based markup languages

without the function of traversing voice to text and vice versa

in Arabic.

Our work is to build this platform including our developed

Arabic TTS (Text-To-Speech), and Arabic ASR (Automatic

Speech Recognition) and merging them with voice xml.

Our platform will accept Arabic voice requests from clients,
and responds to their requests according to the web server.

The platform will also provide Arabic phonetic speech

recognition and Text-To-Speech as its not included in the

standard VoiceXML specification.

Our platform should provide support for voice service

browsing from traditional devices such as computers and for

hand-held and mobile devices, so we have to take care of

specifications of these devices. For this reason, there are two

mailto:script.java@gmail.com

ways to develop the platform. First we can make the platform

as distributed as possible as in figure 1 wherefrom we can

place base components of the platform on the client-side

(devices) as ASR and TTS so we will convert each audio

request file to VoiceXML file using speech recognizer and

transfer the resultant file over the network to the server

which issue the request and responds it as VoiceXML file

send to the client, and this respond file will be converted to

voice (audio) by speech synthesizer located on the client

side.

Second, we can make or develop a centralized platform
including all components on the server-side. In this case,

ASR and TTS will be located on the centralized telephony

server (PSTN) and the request and response will be

transferred over the network as audio streams and analog

signal. Here we can develop more and more voice

applications to support mobile devices and telephony

services.

In our work we chose the first architecture which allows us

to benefit from the existing components so that we don't need

to rebuild these components "the goal is not to invent the

wheel again, but to develop it". By using this method we

assure that we always work according to a predefined and

trustworthy standards.

III. FRAMEWORK

A. System overview:

We can consider that the VoiceXML platform is a middle
layer between the web server and the human. This means that
the platform acts as internet browser but it replaces viewed
pages by voice and user input by user speech i.e. the
interaction between end user and our platform is made by
speech.

Figure 2 shows a high level overview of the system
who has the following components:

 A document server (i.e. a web server): processes

requests that received from a client application

(called the VoiceXML interpreter context). The

server produces VoiceXML documents in reply.

These documents are read by a VoiceXML

interpreter, which is inside a VoiceXML interpreter

context.

 The VoiceXML interpreter context: monitor user

inputs in parallel with the VoiceXML interpreter. the

VoiceXML interpreter context may be responsible
for detecting an incoming call, acquiring the initial

VoiceXML document, and answering the call, while

the VoiceXML interpreter conducts the dialog after

answer.

 The implementation platform is controlled by the

VoiceXML interpreter context and by the

VoiceXML interpreter. The implementation platform

generates events in response to user actions (e.g.,

spoken or character input received, disconnect) and

system events (e.g., timer expiration). Some of these

events are acted upon by the VoiceXML interpreter

itself, as specified by the VoiceXML document,
while others are acted upon by the VoiceXML

interpreter context. Implementation platform

includes converting voice input from the microphone

on client PC or from any other client device into

Arabic text by ASR component (Automatic Speech

Recognizer) , and converting the text that is coming

from the VoiceXML document to voice and

specifically to Arabic speech that the client can hear

and understand by the TTS component (Text To

Speech).

The whole scenario of the interaction is as following: the
server sends the VoiceXML document to the interpreter

which takes the document and sends the text between

<prompt> tags or other tags that require the browser to say

something to the TTS and the client listens the text between

Figure 1. distributed platform overview

RMI / JSP Server RMI / JSP Client

Parsing

file

Parsing

file

ASR

Send

Send

TTS

TTS

Multi-

client
management

Session
management

Service
logic

User

Interact

ion

Figure 2. system components

Web Server (Document

server)

Implementation Platform

Arabic ASR Arabic TTS

Voice XML Interpreter Context

Application sever

VXML Interpreter

Figure 3. Interpreter architecture

VoiceXML Interpreter

Operation Administration &

Maintenance

Prompting

Output

Recognition

Input (rec)

T
o

 T
T

S

F
ro

m
 A

S
R

To the web

server

OpenVXI

these tags, then the client speaks what he wants, and his/her

speech will be passed to the ASR which convert it to Arabic

text and send this text to the interpreter platform which then

make a new VoiceXML document with the URL of the next

document and send it back to the server, after that the server

will send the appropriate document to the interpreter.

From the previous section, now we can say that the system

consists of the following components as shown in(figure 2):

 VoiceXML interpreter: the role of this component is

to manipulate vxml files from the server and work
with speech by connecting to the TTS (Text To

Speech) and ASR (Automatic Speech Recognition).

 Arabic TTS: which will convert text received in

vxml file to Arabic speech.

 Arabic ASR: which will convert user Arabic speech

to text.

 Application server: or web server which store the

vxml documents each document with unique

identifier (URL).

B. Detailed architecture:

As mentioned above, the system consists of number of

components and each of these components can be

implemented in more than one way. We'll discuss detailed

specifications of some of these components in the following

sections:

1) VoiceXML interpreter:
This is the base component in the system and most of our

work is in this component. There are several free (open
source) VoiceXML interpreters but there is no interpreter

provide interaction with the user in Arabic language and this

is what we exactly need, so we will work for adding Arabic

support to an existing interpreter by adding two APIs to the

interpreter, one for managing Arabic ASR and the other for

managing Arabic TTS. Or we can build a full new Arabic

VoiceXML platform that can provide these functions.

The core of the VoiceXML Browser is the OpenVXI open

source VoiceXML interpreter and its associated internet

components for XML parsing The browser consists of the

following components (figure 3):

a) An operations administration and maintenance

(OA&M) system and main process:

This collection of tools is responsible for system

management, session management and error reporting. This

critical component also invokes the speech browser within a

thread it creates to begin execution.

b) The OpenVXI:

This is the component that interprets the VoiceXML markup

and calls into the implementation platform to render the
markup. The VXI is tied directly into the Xerces parser. The

OpenVXI uses the SAX version of the Xerces parser and

does VoiceXML validation for every document. The VXI

uses the SAX parser to convert the VoiceXML to an internal

binary format that is then available for caching. This leads to

a significant performance improvement [3].

c) Prompting output:

VoiceXML 2.0 prompting is considerably more complex

than playing a set of audio files and TTS prompts. The

prompting implementation should be able to:

 Support fetch audio if no other prompt is playing.

 Synthesis more than one speech signal from input text and

choose best (n-Version).

 Support SSML including interleaving TTS and audio for

playback.

 Handle fetch failures and swapping to TTS when audio

fetches fail.

When the interpreter encounters a prompt component that
contains SSML, it passes the text to the TTS. The Queue

method of the interface provides this delegation. The Queue

method takes the text. Queue then blocks until the data is

fetched, or the stream is started.

d) Recognition Input (rec component):

The rec component is responsible for processing user input.

An implementation of the rec interface should be able to:

 Support Arabic speech recognition against multiple
parallel grammars.

 Allow for both speech and DTMF entry.

 Return one or more recognition with corresponding

confidence scores (n-Version).

 Implement the 'builtin' grammars for Arabic language for

simple types (e.g. date, time, and currency).

 Return the waveforms from recognition utterances and

recordings.

Grammars may be specified within VoiceXML directly

within the <grammar> element or indirectly. In the second
case, the text serves a dual purpose of generating text-to-

speech enumerations and speech grammars. The

corresponding grammar must be generated within the rec

component. The implementation of the rec component must

fetch the desired grammar URI and any dependent URIs that

are included via the grammar import directive.

The NLSML (Natural Language Semantic Markup

Language) standard from W3C is the standard using to build

complex grammars where we can assign or catch more than

one data value from each utterance and one complex

grammar.

2) Arabic TTS & Arabic ASR
Building TTS system or ASR system is very language

dependent. It requires a deep analysis of the specification and

characteristics of the target language so we firstly introduce

the Arabic language in some detail, and then we describe the

TTS and ASR.

a) The Arabic Language:
The Arabic language belongs to the Semitic group of

languages which also includes Hebrew, Farsi and Amharic.

Arabic is ranked as number four among the world’s major

languages according to the number of native speakers.

The Arabic language contains 29 letters (hamza is the 29th

letter). There are 6 vowels in Arabic, 3 short and 3 long and

there are 2 semi-vowels, which are diphthongs. Arabic short

vowels are written with diacritics placed above or below the

consonant that precedes them these short vowels are fatha,

damma, and kasrah. And Arabic long vowels are (alef أ ,

waw و ,and yaa ي).
Appendix A shows the Arabic alphabet and how its letters

are classified.

The Arabic alphabet is written from right to left and there is

no difference between upper and lower case. Most of the

letters are attached to one another and they vary in writing

whether they connect to preceding or following letters.

Arabic short vowels are not written, Therefore the reader

must have some knowledge of the language. Short vowels

are marked only where ambiguity appears and cannot be

resolved simply from the context. The written Arabic is a

language of syllable length, rather than accent or stress
furthermore, all syllables should be given their fully length

without slurring any letter. This means that one should not

emphasis any syllable at the expense of another. In the

Arabic language there are two kinds of syllable, short and

long ones.

All syllables have a single onset C followed by a long or a

short vowel. Short vowels are denoted by ”V” and long

vowels are denoted by ”V :”. The short syllable, CV, consists

of a consonant with a short vowel. For example the word

" كَ كَتكَ " (he wrote) consists of three short syllables. These

syllables should be pronounced in an even and equal way.

The long syllables contain a vowelled consonant (consonant

with short vowel) followed by an unvowelled letter

(consonant or long vowel). So long syllables denoted by:

CVV consonant with short vowel followed by long vowel, or

CVC consonant with short vowel followed by consonant.

b) Arabic Text-to-Speech System (TTS):

Text-to-Speech is the process of converting a written text

into artificial speech. It is computer-based program in which

the system processes the text and says it aloud. The system

consists of two major modules:

 The Natural Language Processing Module (NLP) is able

to produce files with a phonetic transcription of the text,

together with the desired intonation and rhythm.

 The Digital Signal Processing Module (DSP) transforms

the symbolic information set receives from the NLP
module into speech.

Each one of the previous module include number of

sequential operations each of them depends on the previous

one as shown in figure 4. The following sections describe

these operations.

1. The Natural Language Processing module

(NLP):

The NLP module consists of three processing stages: Text

Analysis, Automatic Phonetization and Prosody Generation.

The first stage, the text analysis, consists of four categories:

1.1 Text Analysis Module:
This stage consists of four main operations:

• A pre-processing module, where the input text is organized

into lists of words. the first step in the text analysis is to

make chunks out of the input text –i.e. tokenizing it. There

are many tokens in a text, that appear in a way where their

pronunciation has no obvious relationship with their

Natural Language Processing NLP

Text
Analysis

Automatic
Phonetization

Prosody
Generation

pre-
processing

morphological

analysis
contextual

analysis

syntactic-
prosodic

parser

Digital Signal

Processing (DSP)

Wave

generation

DSP

Diphone DataBase
 ٍ

ح

ثثؤ

 ا

Speech
Input

Text

Figure 4. Text-To-Speech System Architecture

appearance [6]. Such as abbreviations (as ص in Arabic,

which may be said as " in the morning), and " جباباً

numbers. Apart from tokenization, Normalization is

needed where a transformation of these tokens into full

text is done.

• A morphological analysis module: this module retrieves

the morph (root) of some words in the text.

• A contextual analysis module that considers word in their

contexts. This is important to be able to reduce possible

part-of-speech categories of the word by simple regular

grammars by using lexicons of stems and affixes [6].
• A syntactic-prosodic parser, where the remaining search

space is examined and the text structure is found. The

parser organizes the text into clause and phrase like

constituents. After that the parser tries to relate these into

their expected prosodic realization[6].

 1.2 Automatic Phonetization:

Where the words are phonetically transcribed. In this stage,

the module also maps sequences of grapheme (some

characters) into sequences of phonemes with possible

diacritic information, such as stress and other prosodic

features, that are important to fluency in speech and natural
sounding speech.
 1.3 Prosody Generation:

Where certain properties of the speech signal such as pitch,

loudness and syllable length are processed. Prosodic features

create segmentation of the speech chain into groups of

syllables. This gives rise to the grouping of syllables and

words in larger chunks.

2. The Digital Signal Processing module (DSP):

In this module a transformation of the received symbolic

information from the NLP module into speech is done.

Concatenative Synthesis is the most technique that used
today, where segments of speech are tied together to form a

complete speech chain. The speech output is produced by

coupling segments from the database to create the sequence

of segments. This technique requires a bit of manual

preparation of the speech segments. There are two categories

within this method, diphone and unit-selection synthesis. The

main difference between the two types of Concatenative

Synthesis lies in the size of the units being concatenated.

Both methods store the pre-recorded speech units in a

database, from which the concatenation originates. Those

parts of utterances that have not been found, processed and

stored in the database are built up from smaller units.
A diphone synthesis uses a minimal speech database

containing all the diphones occurring in a given language.

Diphones are speech units that begin in the middle of the

stable state of a phone and end in the middle of the following

one. The number of diphones depends on the possible

combinations of phonemes in a language (for Arabic, there

are 38 phoneme, so the maximum number of diphones is

38*38=1444) The basic idea is to define classes of diphones,

for example: vowel-consonant, consonant- vowel, vowel-

vowel, and consonant-consonant. The syllabic structure of

Arabic language is exploited here to simplify the required
diphones database. In diphone synthesis, only one example

of each diphone is contained in the speech database. In order

to build a diphone database, the following questions have to

be answered and determined: What diphone pairs exist in a

language and what carrier words should be used? The answer

for these questions are very language independent.

After deep search in the TTS systems that supports Arabic or

not, we choose to use a MBROLA TTS system in our

platform. MBROLA project is a TTS system that has two

Arabic voices (ar1, ar2). The MBROLA project was initiated

by the TCTS Laboratory in the Faculté Polytechnique de
Mons, Belgium see [8]. The main goal of the project is to

have a speech synthesis for as many languages as possible.

The MBROLA speech synthesizer is based on diphone

concatenation the most used technique of synthesis today.

The advantages of using MBROLA TTS are the next:

 It provides two Arabic voices and two Arabic databases

(ar1, ar2). And we can build our own voice and database

that conform to MBROLA tools.

 We can use MBROLA Arabic databases as a voice for

FreeTTS system which is a TTS system written entirely in

JAVA.

 MBROLA databases for Arabic provide support and

voices for a full phone set of Arabic language including

characters such as (ص, ض, خ, ح).

But MBROLA has an disadvantage that it forces us to write

any Arabic text not using Arabic alphabet but by using of

other alphabet (English). But in real, we can solve this

challenge by building a simple module converts each Arabic

letter from the input text into its corresponding letter

according to that used in MBROLA.

We can use another TTS systems, such as festival, but we

prefer MBROLA with FREETTS because it is platform
independent, whereas festival works on the UNIX platform.

c) Arabic Automatic Speech Recognition System

(ASR):

Automatic Speech Recognition is a process of converting

the speech on the microphone into text format. ASR process

contains the following modules as shown in figure 5:

1. Feature Extraction:

Speech acquisition begins with a person speaking into a

microphone. This act of speaking produces a sound pressure

wave that forms an acoustic signal. The microphone or

telephone receives the acoustic signal and converts it to an

analog signal that can be understood by an electronic device.
Finally, in order to store the analog signal on a computer, it

must be converted to a digital signal. And it includes

following steps:

 Pre-emphasis: which include reduce the range of suffers

and noise by implying FIR filter on the signal[14]:

H(z) =1− az−1 0.9 ≤ a ≤1.0 .

 Endpoints detection: which include detecting start and end

of each word by determining the front and end thresholds

of the signal.

 Frame blocking: dividing into overlapping frames of 20ms

every 10ms. The speech signal is assumed to be stationary
over each frame.

 Windowing: To minimize the discontinuity of a signal at

the beginning and end of each frame, we window each

frame to increase the correlation of the linear predictive

coding (LPC) spectral estimates between consecutive

frames The windowing tapers the signal to zero at the

beginning and end of each frame [14]. A typical LPC

window is the Hamming window of the form:

2. Linguist:

Or knowledge base, it provides the information the decoder

needs to do its job. It is made up of three modules which
are[11]:

 Acoustic Model: Contains a representation (often

statistical) of a sound, created by training using many

acoustic data.

 Dictionary: It is responsible for determining how a word is

pronounced.

 Language Model: It contains a representation (often

statistical) of the probability of occurrence of words.

3. Search Graph:

The graph structure is produced by the linguist according to

certain criteria (e.g., the grammar), using knowledge from
the dictionary, the acoustic model, and the language

model[11]. the system uses HMM (Hidden Markov Model)

which make the search faster in the dictionary according to

the HMM states.

4. Decoder:

It is the main bloc of the system, which performs the bulk of

the work. It reads features from the front end, couples this

with data from the knowledge base and feedback from the

application, and performs a search to determine the most

likely sequences of words that could be represented by a

series of features[11].

After this explanation of the ASR systems, we choose

SPHINX which is a speech recognizer written entirely in the

JAVA programming language. Now, we don't have a full

Arabic recognition system building on SPHINX, but we

attempt to train SPHINX to recognize Arabic words. We

have this problem, because we don't have an acoustic model

for an Arabic language. Also we don't have a dictionary
with large vocabularies for Arabic words and each

pronunciations.

For this reason, in this work we attempt to recognize Arabic

speech depending on the English models and

pronunciations.

We have an another option to train the system to recognize a

speech by using MATLAB that provides us with functions

can train a neural network, but by this way each word needs

a specific network(Elman Network), so the number of words

will be limited.

IV. CONCLUSION

We have started our works a few weeks ago, and we expect
that we will achieve a full work in the next few months. In

the end of the work we should be able to produce a platform

that provides Arabic language support to VoiceXML

browsers which will help more than 200 million Arabic

people to use this new technology that will spread largely in

the few next years. Not only our framework will provide

this, but also it motivates researchers, developers and

programmers to build full and high quality Arabic TTS and

ASR including full Arabic diphone database, Arabic

language model, dictionary, and acoustic model.

Figure 5. Automatic Speech Recognition System Architecture

Feature Extraction

Pre-emphasis
Frame Blocking

(segmentation)
windowing EndPoints

detection

Linguist

Acoustic Model

Dictionary

Language Model

Decoder

Search Graph
Output text

text

HMM engine

speech

V. FURTHER WORK

In the current work we don't provide a sufficient support for

telephony services and mobility applications, so we plan to

achieve a specific Arabic platform for such that devices.

Now, one of our main goals is to build full Arabic diphone

database supports all specifications of Arabic characters,

pronunciations, morphology, and prosody. This database
should aim developers to build Arabic dictionary that show

all characters in the Arabic language with its exact suitable

pronunciation and to build language and acoustic models for

Arabic.

VI. A CKNOWLEDGEMENTS

Finally, we would like to thank Dr. Malek ALI for his help

that facilitates our work and that allows us to begin this

research in the Albaath University.

APPENDIX A: ARABIC ALPHABET FROM SAMPA

Symbol Keyword English

gloss

Orthography

Consonants

Plosives

b ba:b door ثبة

t tis?` nine تسع

d da:r home دار

t` t`a:bi?` stamp طبثع

d` d`arab he hit ضرة

k kabi:r large جير

g gami:l beautiful جويل

 (in Egyptian pronunciation)

? ?akl food أ ل

q qalb heart قلت

p paris Paris ثرس

Fricatives

f fi:l elephant فيل

v nivi:n Nevien

(personal

name)

 نفين

T Tala:T three ثلاث

D Dakar male ذ ر

D` D`ala:m darkness ظلام

s sa?`i:d happy سعيد

z zami:l colleague زهيل

s` s`aGi:r small غير

S Sams sun شوس

Z Zami:l beautiful جويل

x xit`a:b letter خطبة

G Garb west غرة

X\ X\ilm dream الن

?` (?\) ?`alam flag علن

Symbol Keyword English

gloss

Orthography

h hawa:? air هواء

Nasals

m ma:l money هبل

n nu:r light نور

Trill

r rima:l sand رهبل

Lateral

l la: no لا

l` ?al`l`ah God الله

Semivowels

w wa:hid one وااد

j jawm day يوم

Vowels

i D`il shadow ظل

a X\al solution ال

u ?`umr age عور

i: ?`i:d feast عيد

a: ma:l money هبل

u: fu:l beans فول

REFERENCES

[1] VoiceXML specification. Voice browser working group of world wide

web consortium. http://www.w3.org/TR/VoiceXML20.

[2] http://www.vxml.org/.

[3] OpenVXI from CMU at:

http://www.speech.cs.cmu.edu/openvxi/index.html.

[4] Beasley, R. et al.: Voice Application Development with VoiceXML.

USA: Sams Publishing, August 2001. (ISBN 0-672-32138-6).

[5] voice XML programmer's guide 6th edition from IBM.

[6] Maria Moutran Assaf ”A Prototype of an Arabic Diphone Speech

Synthesizer in Festival".

[7] Husni-Al-Muhtaseb, Moustafa Elshafei and Mansour Al-Ghamdi

"TECHNIQUES FOR HIGH QUALITY ARABIC SPEECH

SYNTHESIS" College of Computer Science and Engineering, King

Fahd University of Petroleum and Minerals, 2003.

[8] MBROLA-project The MBROLA project towards a freely available

multilingual speech synthesizer:

 http://tcts.fpms.ac.be/synthesis/mbrola.hml

[9] freeTTS from sourceForge http://freetts.sourceforge.org.

[10] SAMPA. computer readable phonetic alphabet.

http://www.phon.ucl.ac.uk/home/sampa/home.htm.

[11] CMU Sphinx: a speaker-independent large vocabulary continuous

speech recognizer. It is also a collection of open source tools and

resources that allows researchers and developers to build speech

recognition systems.

http://www.speech.cs.cmu.edu/;

http://cmusphinx.sourceforge.net/html/cmusphinx.php

[12] M. M. El Choubassi, H. E. El Khoury, C. E. Jabra Alagha, J. A. Skaf

and M. A. Al-Alaoui "Arabic Speech Recognition Using Recurrent

Neural Networks".

[13] THE IBM 2006 GALE ARABIC ASR SYSTEM.

[14] Ramzi A. Haraty and Omar El Ariss Lebanese American University,

Beirut, Lebanon: "CASRA+: A Colloquial Arabic Speech Recognition

Application".

[15] D. Vergyri, K. Kirchhoff, R. Gadde, A. Stolcke, and J. Zheng,

“Development of a conversational telephone speech recognizer for

levantine arabic,” in Interspeech-2005, 2005.

[16] Kirchhoff, K., et al., 2002. Novel approaches to Arabic speech

recognition. Final Report from the JHU Summer Workshop, Tech.

Rep., John Hopkins University.

[17] A.Messaoudi, Gauvain J.-L., and L. Lamel, “Arabic broadcast news

transcription using a one million word vocalized vocabulary,” in

ICASSP-2006, 2006.

[18] M. Elshafei Ahmed, “Toward an Arabic Text-To-Speech System”, The

Arabian Journal for Science and Engineering, Volume 16, Number 4,

October 1991.

[19] H. Satori, M. Harti, and N. Chenfour: "Introduction to Arabic Speech

Recognition Using CMUSphinx System"

http://www.w3.org/TR/VoiceXML20
http://www.vxml.org/
http://www.speech.cs.cmu.edu/openvxi/index.html
http://tcts.fpms.ac.be/synthesis/mbrola.hml
http://freetts.sourceforge.org/
http://www.phon.ucl.ac.uk/home/sampa/home.htm
http://www.speech.cs.cmu.edu/
http://cmusphinx.sourceforge.net/html/cmusphinx.php

